Table of Contents

Introduction ... 3

EIT Bandwidths .. 3

The Process Values (UV Power Puck® II, UVICURE® Plus II) .. 6

Operation and Features (UV Power Puck® II, UVICURE® Plus II) .. 7

Operating the Radiometer (UV Power Puck® II, UVICURE® Plus II) 8

Setup & Default Modes (UV Power Puck® II, UVICURE® Plus II) ... 9

Explanation of Settings: (UV Power Puck® II, UVICURE® Plus II) 11

UV Power Puck®Flash ... 11

Diagnostics & Error Messages (All Instruments) .. 16

 Low Battery Indicator .. 16

 Over-Temperature State .. 16

 Over-Range State .. 17

 Other Error Codes ... 17

PC Communications .. 17

Replacing the Batteries ... 19

Cleaning Guidelines .. 20

Warranty .. 21
Calibration/Returning the Instrument to EIT Instrument Markets

Product Specifications

Regulatory Statement

Software Distribution Requirements
Introduction

The EIT Instrument Markets UV Power Puck® II, UVICURE® Plus II and UV Power Puck® Flash are updated versions of the UV Power Puck® and UVICURE® Plus radiometers widely used throughout the global UV industry. With user selectable sample rates, reference modes, UV irradiance profile graphs, PC communications, and other features, these new instruments can be used on production lines of different speeds. The instruments retain their one-button easy to use operation in addition to having advanced features that can be accessed from additional buttons on the instrument.

EIT works to make continuous improvements in our units. This manual is intended for use with instruments that have a USB port to transfer data to a computer.

The UV Power Puck® II and UVICURE® Plus II are self-contained, electro-optic radiometers that measure and display total UV energy (J/cm²) and UV irradiance (W/cm²) in a UV curing system.

The UV Power Puck® Flash is a self-contained, electro-optic radiometer designed to be used with pulsed UV sources operating from 100-120 pulses per second. The UV Power Puck® Flash measures and displays the total UV energy (J/cm²). The specific operation of this instrument is described starting on page 11 of this manual.

The UV Power Puck® II, UVICURE® Plus II and UV Power Puck® Flash combine compact size and robust design to withstand the extremes of UV curing environments while providing accurate measurement. The carefully designed optical sensing systems only measure wavelengths that are relevant to the UV process. The output of the sensing system is converted to digital form and displayed on an easy-to-read OLED display.

EIT Instrument Markets UV Power Puck® II, UVICURE® Plus II and UV Power Puck® Flash are designed & manufactured in the USA.
EIT Bandwidths

EIT has five different bandwidths choices in the UV region currently available in the Puck instruments. The five different EIT bandwidths are:

- UVA (320-390 nm)
- UVA2 (375-415 nm)
- UVB (280-320 nm)
- UVC (250-260 nm)
- UVV (395-445 nm)

UVA2 is the most recent EIT bandwidth and it can be used to measure both additive bulbs and UV LED sources in the 380-410 nm range.
The UV Power Puck® II simultaneously measures four different ranges of ultraviolet wavelengths with one pass through the UV process. The UV Power Puck® II reading includes total energy and peak irradiance of four bands.

The UV Power Puck® II is available in two combinations of **four** EIT Bandwidths.

- **EIT Standard Power Puck® II**
 - EIT UVA, UVB, UVC & UVV

- **EIT UVA2 Power Puck® II**
 - EIT UVA, UVA2, UVB & UVV

The UVICURE® Plus II includes a choice of **one** (UVA, UVA2, UVB, UVC, UVV) of the EIT wavelength bands. The UVICURE® Plus II reading includes total energy and peak irradiance of any one bandwidth.

The UV Power Puck® Flash is available only with EIT UVA, UVB, UVC & UVV
The Process Values-UV Power Puck® II and UVICURE® Plus II

The two process values read by the UV Power Puck® II and UVICURE® Plus II are total energy and peak irradiance. The irradiance reading is instantaneous and is the highest amount of UV energy that the unit senses during an exposure run. The irradiance value is energy at one instant in time during the exposure run. The radiometers measure and display irradiance in watts, milliwatts or microwatts per square centimeter (W/cm², mW/cm², µW/cm²).

Total energy is a factor of irradiance over time. The instruments derive this value from the irradiance values during the exposure run and the length of time of the run. Total energy is measured in joules, millijoules or microjoules per square centimeter (J/cm², mJ/cm², µJ/cm²).

Reaching the energy and irradiance values specified by your process is necessary for achieving a complete UV cure.

Ultraviolet Radiation

Although this product is not a source of UV light, it is used in a UV environment. Refer to the UV source's documentation for recommended protective measures against UV radiation present in the UV environment.
Operation and Features- UV Power Puck® II and UVICURE® Plus II

- Setup Mode Button
- Depress and Hold until screen is illuminated.
- On / Off Button
- Buttons perform the function indicated on the display bottom line.
- Run / Exit Run Button
- Press to enter Run Mode.
- Press to Exit Run Mode.
- Unit Serial Number
- Battery Door
- Display
- Alarm
- USB PC Connector

On / Off Button
Depress and Hold until screen is illuminated.

Run / Exit Run Button
Press to enter Run Mode.
Press to Exit Run Mode.
Operating the Radiometer- UV Power Puck® II and UVICURE® Plus II

Turning “ON” the Radiometer: Press and Hold the ON / OFF button until the display illuminates. The display will briefly display the Radiometer Model Name, Serial Number, Software Version, Calibration Date, Range, and Wavelength Bands installed. The display will then enter the default mode and display the data from the last run before the unit was turned off.

Turning “OFF” the Radiometer: Press and Hold the ON / OFF button. A tone will sound. When tone stops, release the button. The unit turns off.

Entering the “RUN” MODE: A short press of the “RUN” button clears the memory and puts the unit in the “RUN” mode. The display shows “RUNNING” after shortly displaying the internal temperature of the unit. Confirm that the unit displays “RUNNING” before initiating a reading.

Place the radiometer on the belt or object with the optic window looking toward the UV source. The display and buttons will be facing away from the UV source. When the radiometer exits the curing chamber, the display will still be flashing “RUNNING”.

CAUTION: Exposing the display to high UV radiation will damage the display.

Exiting the “RUN” MODE: A short press of the “STOP” button (Soft button display bar indicates “STOP” next to the “ON / OFF” button) will exit the “RUN” mode and will return to the same default mode prior to making the exposure run, but will display the new value.
Setup & Default Modes- UV Power Puck® II and UVICURE® Plus II

To enter the Setup Mode, use the soft button to the left of the display. Press and hold for 0.5 second, then release. The Setup screen will display the current settings. Default modes will appear preceded with an *asterisk. The setup screen below shows all possible choices for each mode.

![UV Power Puck® II Setup Screen](image-url)
To change selections, use the down \(\downarrow \) and right \(\rightarrow \) arrow buttons located under the arrows to scroll in the indicated direction. To change the default selection, first select the line, then the setting on each line.

Press the SAVE button to save the setting as the new default. An *asterisk will appear next to the setting.

When changes are completed, press the EXIT button to return to the default mode.
Explanation of Settings:

MODE:
- **ALL CHANNEL (UV Power Puck® II Only)** – displays Joules and Watts for each of the four (4) UV bands (UVA, UVB, UVC, UVV)
- **TOGGLE (UVICURE® Plus II Only)** – Pressing the SEL button, the user can “toggle” between the GRAPH mode and REFERENCE mode.
- **REFERENCE** – Make a run, data will appear next to the UV band. **CAUTION: Be sure you want to overwrite the current data on the REF line before pressing SAVE.** Press SAVE, data is transferred to the REF line. The data will remain until it is overwritten. The difference or change between the current run data and the reference data is displayed as a percentage change on the %DIFF line.
- **GRAPH** – Illustrates the irradiance profile for the UV source(s). UV Data is stored and displayed as a graph of time (X axis) vs. intensity (Y axis) for each UV lamp source.

SMOOTH:
- **OFF** – Displays the Peak Irradiance as measured at 2048 samples per second.
- **ON** – Displays the Peak Irradiance as measured at 25 samples per second.

UNITS: J/W, mJ/mW, µJ/µW – Select the unit values

DISPLAYS: LOW, MEDIUM, HIGH – Select the display intensity

SAVE ↘ ➔ EXIT – Soft Button Indicators
UV Power Puck® *FLASH*

The following section highlights the use of the UV Power Puck® Flash instrument.

Different than conventional UV mercury lamps that produce UV continuously, pulsed UV light systems generate high peak power UV pulses. The process value displayed by the UV Power Puck® *FLASH* is total energy.

Total energy is a factor of the peak pulses over time. The instruments derive this value from the pulse values during the exposure run and the length of time of the run. Total energy is calculated and displayed in joules or millijoules per square centimeter (J/cm2, mJ/cm2).

Reaching the proper total UV energy values required by your process is necessary for achieving a complete UV cure.

Ultraviolet Radiation

Although this product is not a source of UV light, it is used in a UV environment. Refer to the UV source's documentation for recommended protective measures against UV radiation present in the UV environment.
UV Power Puck® *FLASH*-Operation and Features

Setup Mode Button
Depress and Hold until screen is illuminated.

On / Off Button
Press to enter Run Mode.
Press to Exit Run Mode.

Soft Button Operation
Buttons perform the function indicated on the display bottom line.

Unit Serial Number

Battery Door

Display

Alarm
UV Power Puck® *FLASH* - Operating the Radiometer

Turning “ON” the Radiometer: Press and Hold the ON / OFF button until the display illuminates. When the button is released, the display will briefly display the Radiometer Model Name, Serial Number, Software Version, Calibration Date, Range, and Wavelength Bands installed. The display will then enter the default mode and display the data from the last run before the unit was turned off. Continuing to hold down the button at startup will extend the display time until released.

Turning “OFF” the Radiometer: Press and Hold the ON / OFF button. A tone will sound. When tone stops, release the button. The unit turns off.

Entering the “RUN” MODE: A short press of the “RUN” button clears the memory and puts the unit in the “RUN” mode. The display shows “RUNNING” after shortly displaying the internal temperature of the unit. Confirm that the unit displays “RUNNING” before initiating a reading.

Place the radiometer on the belt or object with the optic window looking toward the UV source. The display and buttons will be facing away from the UV source. When the radiometer exits the curing chamber, the display will still be flashing “RUNNING”.

CAUTION: Exposing the display to high UV radiation will damage the display.

Exiting the “RUN” MODE: A short press of the “STOP” button (Soft button display bar indicates “STOP” next to the “ON / OFF” button) will exit the “RUN” mode and will return to the same default mode prior to making the exposure run, but will display the new value.
UV Power Puck® *FLASH* - Setup & Default Modes

To enter the Setup Mode, use the soft button to the left of the display. Press and hold for 0.5 second, then release. The Setup screen will display the current settings. Default modes will appear preceded with an *asterisk. The setup screen below shows all possible choices for each mode.

To change selections, use the down and right arrow buttons located under the arrows to scroll in the indicated direction. To change the default selection, first select the line, then the setting on each line. Press the SAVE button to save the setting as the new default. An *asterisk will appear next to the setting.

When changes are completed, press the EXIT button to return to the default mode.
UV Power Puck® *FLASH*-Explanation of Settings:

MODE:

ALL CHANNEL – displays Joules reading for each of the four (4) UV bands (UVA, UVB, UVC, UVV)

REFERENCE – Make a run, data will appear next to the UV band. **CAUTION: Be sure you want to overwrite the current data on the REF line before pressing SAVE.** Press SAVE, data is transferred to the REF line. The data will remain until it is overwritten. The difference or change between the current run data and the reference data is displayed as a percentage change on the %DIFF line.

GRAPH – Illustrates the irradiance profile for the UV source(s). UV data is stored and displayed as a graph of time (X axis) vs. intensity (Y axis) for each UV lamp source.

SMOOTH: n/a (Not applicable)

UNITS: J, mJ, µJ – Select the unit values

DISPLAYS: LOW, MEDIUM, HIGH – Select the display intensity

SAVE ➩ EXIT – Soft Button Indicators
Diagnostics & Error Messages—All Instruments

The UV Power Puck® II, UV Power Puck® FLASH and UVICURE® Plus II continuously conduct internal self-
diagnostics. If the unit detects an internal problem, it will display one or more of the following error codes in the upper left corner on the display. Error codes are two alphanumeric characters preceded by an *. If two errors are experienced at the same time, both error codes will flash alternately on the screen every 0.5 seconds. Certain error codes may indicate problems that require returning the unit to the factory for service.

Low Battery Indicator

*LB – Low Battery
If this happens during an exposure run, the reading is still valid. The low battery indicator is designed to illuminate early enough so that your data remains valid. Under severe low battery conditions, the unit does not operate. Therefore, confirm that the unit flashes “RUNNING” before initiating a reading.

Over-Temperature State

*OT – Over Temperature
If the internal temperature of the UV Power Puck® or UVICURE® Plus exceeds 65°C during an exposure run, the unit will emit a steady beeping tone after the run. However, the data it has collected is accurate and can be read by pressing the Select button. When doing this, the beeping tone stops and you can scroll through the data readings. In addition, if the internal temperature of the unit exceeds 75°C, the unit beeps once then displays the internal temperature continuously. The unit will not operate until the internal temperature drops below 75°C. The maximum internal temperature is 80°C. If the internal temperature exceeds 80°C, the warranty is voided. CAUTION: If you
Press the Reset button to initiate the RUN mode before the unit cools to 75°C, all data from the previous exposure run is cleared from memory. The unit beeps and again continuously displays the temperature.

Over Range State

*OR – Over Range
The over range error message will be displayed if the peak irradiance value is too large for the instrument to measure. Note that a unit’s full scale range will be marginally higher than the normal range. Readings that exceed the nominal range and do not result in an *OR error are valid.

Other Error Codes
For all other error codes, please call EIT for disposition.

PC Communications
The use of the supplied software with the instrument is covered on the supplemental software guidelines.

Please also see the distribution requirements listed at the end of this manual and on the supplied software guidelines.
Replacing the Batteries-All Instruments

The UV Power Puck® II, UV Power Puck® FLASH or UVICURE® Plus II should be turned OFF.

1. Loosen the screw on the battery door and remove the door.
2. Remove the old batteries.
3. Install two new AAA size alkaline cells, observing polarity. *Both cells are installed in the same direction*. The proper direction is indicated on the PCB and on the housing inside the battery compartment. The unit is designed so it will not operate with reversed cells.
4. Replace the door and the screw.
Cleaning Guidelines-All Instruments

Display Cleaning Instructions
Use of a Soft Cloth is Recommended for Cleaning the Display Window
Use of Isopropyl Alcohol is acceptable

WARNING – DO NOT USE ACETONE TO CLEAN THE DATA DISPLAY SCREEN.
IT MAY DAMAGE THE DISPLAY.

Optics Cleaning-General Instructions
Note that cleaning the window too often can cause changes in the readings and damage to the optical coating on the mirrored surface. Use caution when touching the mirrored surface.

The following guidelines are for cleaning the optical surfaces on EIT Instrument Markets instruments. However, EIT Instrument Markets cannot have full knowledge of contaminants present in all applications and as a result cannot test for their effects. Therefore, we cannot assume responsibility for damage to customer instruments, which results from following these directions once the warranty period has expired. In addition, customers are advised to obtain and read the MSDS for any chemical used for cleaning optics, and for taking necessary precautions. EIT Instrument Markets makes no claim for the safety of any of these chemicals.

1. LOOK.
Closely examine the optical surface. If no contaminant is visible, it is best not to clean the instrument. The optics are delicate and handling should be minimized. The two exceptions to this rule are when:
a.) It is known that a process chemical has come in contact with the instrument's optics, or
b.) A shift in readings has been observed with the instrument, and the design of the UV system is such that contamination of the radiometer is a possible cause of the measurement error.

2. **BLOW.**
The next step is to use compressed gas to remove any loose material from the surface of the optics. This step is necessary because loose material, especially silicates and other abrasive components, can cause scratching of the optical surface during the remaining steps. Compressed gasses we recommend, in order of preference, are:

(a) Dry nitrogen
(b) Chemtronics® Duster (p/n's ES1017, ES1217, ES1617) or similar tetrafluoroethane-based products
(c) A rubber air bulb (typically found in camera supply shops)
(d) Compressed air from an oil-free, instrument grade system, sometimes referred to as instrument air

In the case of any compressed gas, it is best to avoid making the optic too cold. The resulting condensation, while typically easy to remove, presents added difficulty in the cleaning process.

Two common practices are not recommended. Blowing on the optics with the mouth is not recommended; various components of saliva are extremely difficult to remove from the optics. Ordinary compressed air (sometimes referred to as shop air) should also be avoided because of the difficulty in removing oil from the optical surface.

3. **FLOOD.**
Apply a liberal amount of solvent to the window. The purpose of the solvent is to loosen the contaminants from the surface, so surface tension can remove the contaminant in step 4. The solvents used depend on what the
user has available, and what contaminants are expected in the field. EIT Instrument Markets recommends cleaning the optic once with isopropyl alcohol, and once with acetone for best results **(DO NOT USE ACETONE ON THE DATA DISPLAY)**. Other suitable solvents include de-ionized water, methyl alcohol, and ethyl alcohol. Customers working with non-polar chemicals may find Methyl-ethyl-ketone (MEK) to be an effective solvent. Customers should avoid using solutions containing detergents.

4. **WIPE**
Using a lint-free wipe or a cotton swab, wipe the surface clean. Either the wipe or swab needs to be thoroughly wet with the solvent, so the surface tension of the solvent will allow the contaminant to be captured on the wipe. Users may find it convenient to start again at step 3 with a second solvent. A source for lint free wipes is Kimberly Clark, Inc.'s Kimwipes®.

EIT Instrument Markets does not recommend wiping the surface with a dry wipe or swab of any kind. The absence of solvent greatly increases the chance for the optical surface to be abraded.

EIT Instrument Markets can provide cleaning advice, assistance, and repair or replacement in cases where these guidelines fail to remove contaminants. Following these guidelines will help customers get long life and accurate readings from their radiometers.

Warranty (New Product, Calibration, Repair) All Instruments

New Product Warranty
EIT Instrument Markets warrants that all goods described in this manual (except consumables) shall be free from defects in material and workmanship. Such defects must become apparent within six months after delivery of the goods to the buyer.
EIT Instrument Markets' liability under this warranty is limited to replacing or repairing the defective goods at our option. EIT Instrument Markets shall provide all materials and labor required to adjust, repair, and/or replace the defective goods at no cost to the buyer only if the defective goods are returned, freight prepaid, to EIT Instrument Markets during the warranty period.

EIT Instrument Markets shall be relieved of all obligations and liability under this warranty if:

1. The user operates the device with any accessory, equipment, or part not specifically approved or manufactured by EIT Instrument Markets, unless the buyer furnishes reasonable evidence that such installations were not a cause of the defect. This provision shall not apply to any accessory, equipment, or part that does not affect the proper operation of the device.
2. Upon inspection, the goods show evidence of becoming defective or inoperable due to abuse, mishandling, misuse, accident, alteration, negligence, improper installation, lack of routine maintenance, or other causes beyond our control.
3. The goods have been repaired, altered, or modified by anyone other than EIT Instrument Markets authorized personnel.
4. The buyer does not return the defective goods, freight prepaid, to EIT Instrument Markets within the applicable warranty period.

There are no warranties that extend beyond the description on the face hereof. This warranty is in lieu of - and is exclusive of - any and all other expressed, implied, or statutory warranties or representations. This exclusion includes merchantability and fitness, as well as any and all other obligations or liabilities of EIT Instrument Markets. EIT Instrument Markets shall not be responsible for consequential damages resulting from malfunctions of the goods described in this manual.
No person, firm, or corporation is authorized to assume for EIT Instrument Markets, any additional obligation or liability not expressly provided for herein except in writing duly executed by an officer of EIT Instrument Markets.

If any portion of this agreement is invalidated, the remainder of the agreement shall remain in full force and effect.

This warranty shall not apply to any instrument or component not manufactured by EIT Instrument Markets.

Calibration and Repair Warranty

EIT Instrument Markets will warranty calibration and/or repair services just performed, for 90 days. This Calibration and Repair Warranty does not apply to nor cover repairs that may otherwise occur to the instrument. Such repairs may be covered under the New Product Warranty based on the age of the instrument.

Calibration Interval

EIT Instrument Markets recommends that UV Power Puck® II, UV Power Puck® FLASH and UVICURE® Plus II be calibrated every six months.

Refer to the "Returning the Instrument to EIT Instrument Markets" section below and our web site (www.eit.com/instruments) for instructions on how to ship your unit in for calibration.

Calibration/Returning the Instrument to EIT Instrument Markets

Warranty Repair, Non-Warranty Repair, and Instruments being returned for Calibration:

The most current and up to date information on returning an Instrument to EIT for calibration and service can be found on the EIT website. (www.eit.com/instruments)
1. Once you get to the EIT home page click on “UV Instruments & Radiometers” to go to the UV instruments home page
2. On the next page click on “Customer Service”
3. Once you are in the Customer Service area you will see the following:

RETURNING A UNIT TO EIT
Units returned to EIT for calibration, warranty and non-warranty work do not need a RMA number. See below for information on returning a unit to EIT.
EIT recommends that all UV instruments be calibrated every 6 months. When a unit requires EIT service, ship the unit prepaid to:

EIT Instrument Markets
22815 Glenn Drive/Suite 104
Sterling, VA 20164

Be sure to include company information, contact phone, fax and e-mail information in the package. When returning the UV Power Puck® II, UV Power Puck® FLASH or UVICURE® Plus II, please return the equipment in the original (or equivalent) packaging. You will be responsible for damage incurred from inadequate packaging, if the original packaging is not used. The customer is responsible for insuring the unit during transportation to EIT Instrument Markets.

Please complete a copy of the Service Request Form and send it with your shipment. This form MUST be completed and sent in with your unit(s).
4. If you are requesting the price for calibration simply scroll down and find the price for calibration based on your model. Prices listed for calibration on our web site do not include any charges for repairs that may be needed. EIT Instrument Markets will notify you of repairs not covered by warranty and their cost prior to performing any work on the equipment.
Product Specifications- UV Power Puck® II & UVICURE® Plus II

EIT Instrument Markets reserves the right to make changes in design at any time without incurring any obligation to install the same on units previously purchased.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Easy to Read, Yellow Text on Black Background</td>
</tr>
</tbody>
</table>
| Dynamic Range | 10 Watt: UVA, UVB, UVV - 100mW/cm² to 10W/cm²; UVC - 50mW/cm² to 1W/cm²
Low Power Versions: UVA, UVB, UVC, UVV: 1mW/cm² to 100mW/cm² |
| Accuracy | +/- 10%; +/- 5% typical |
| Spectral Response | Approximately cosine |
| Spectral Ranges (UV Power Puck® II) | Standard Power Puck II: 4-channel continuous monitoring. 320-390nm (UVA), 280-320nm (UVB), 250-260nm (UVC), 395-445nm (UVV)
UVA2 Power Puck II: 4-channel continuous monitoring. 320-390nm (UVA), 375-415nm (UVA2), 280-320nm (UVB), 395-445nm (UVV) |
| Spectral Ranges (UVICURE® Plus II) | 1-channel continuous monitoring. 320-390nm (UVA), 375-415nm (UVA2), 280-320nm (UVB), 250-260nm (UVC), 395-445nm (UVV) |
| Spatial Response | Approximately cosine |
| Operating Temperature | 0-75°C Internal temperature; tolerates high external temperatures for short periods (audible alarm indicates when temperature has exceeded tolerance) |
| Time-Out Period | 2 minutes DISPLAY mode (no key activity). A no time-out mode can be activated by EIT-IM. |
| Battery | Two user-replaceable AAA Alkaline Cells |
| Battery Life | Approx. 20 hours with display on |
| Dimensions | 4.60 x 0.50 inches; 117 mm x 12.7 mm (D x H) |
| Weight | 10.1 ounces (289 grams) |
| Package Material | Aluminium, stainless steel |
| Carrying Case Material | Cut polyurethane interior, scuff resistant nylon exterior cover |
| Carrying Case Weight | 9 ounces (260 grams) |
| Carrying Case Dimensions | 10.75 x 3.5 x 7.75 inches; 274 x 89 x 197 mm (W x H x D). |
Product Specifications - UV Power Puck® **FLASH**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Easy to Read, Yellow Text on Black Background</td>
</tr>
<tr>
<td>Range</td>
<td>2 mJ/cm² per pulse</td>
</tr>
<tr>
<td>Accuracy</td>
<td>+/- 10%; +/- 5% typical</td>
</tr>
<tr>
<td>Spectral Response</td>
<td>Approximately cosine</td>
</tr>
<tr>
<td>Spectral Ranges (UV Power Puck® FLASH)</td>
<td>4-channel continuous monitoring, 320-390nm (UVA), 280-320nm (UVB), 250-260nm (UVC), 395-445nm (UVV)</td>
</tr>
<tr>
<td>Spatial Response</td>
<td>Approximately cosine</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0-75°C Internal temperature; tolerates high external temperatures for short periods (audible alarm indicates when temperature has exceeded tolerance)</td>
</tr>
<tr>
<td>Time-Out Period</td>
<td>2 minutes DISPLAY mode (no key activity). A no time-out mode can be activated by EIT-IM.</td>
</tr>
<tr>
<td>Battery</td>
<td>Two user-replaceable AAA Alkaline Cells</td>
</tr>
<tr>
<td>Battery Life</td>
<td>Approx. 20 hours with display on</td>
</tr>
<tr>
<td>Dimensions</td>
<td>4.60 x 0.50 inches; 117 mm x 12.7 mm (D x H)</td>
</tr>
<tr>
<td>Weight</td>
<td>10.1 ounces (289 grams)</td>
</tr>
<tr>
<td>Package Material</td>
<td>Aluminum, stainless steel</td>
</tr>
<tr>
<td>Carrying Case Material</td>
<td>Cut polyurethane interior, scuff resistant nylon exterior cover</td>
</tr>
<tr>
<td>Carrying Case Weight</td>
<td>9 ounces (260 grams)</td>
</tr>
<tr>
<td>Carrying Case Dimensions</td>
<td>10.75 x 3.5 x 7.75 inches; 274 x 89 x 197 mm (W x H x D).</td>
</tr>
</tbody>
</table>
Regulatory Statements

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This equipment is a Class A device, suitable for use in all establishments other than domestic and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

This equipment is in conformity with the following standards and therefore bears CE marking:

- IEC 61326-1:2005
- EN55011: 1998

Following the provisions of the applicable directives:

- 98/34/EEC and amendments

Designed and manufactured in the USA.
Software Distribution Requirements

1. Copyright © 2009 National Instruments Corporation. All Rights Reserved
2. By using the software supplied with this instrument, end users agree to not:
 (i) reverse engineer, decompile, or disassemble the SOFTWARE (except to the extent such foregoing restriction is expressly prohibited by applicable law);
 (ii) sub-license, lease, or rent the SOFTWARE;
 (iii) distribute in part, modify, or create derivatives of the SOFTWARE;
 (iv) amend, modify, or supplement driver interface SOFTWARE with any additional code except for the purpose of further configuring the driver interface SOFTWARE for use with hardware of National Instruments Corporation; and
 (v) directly or indirectly, export, re-export, download, or ship the SOFTWARE in violation of the laws and regulations of the U.S.A.